View source on GitHub |
Output strings (e.g. filenames) to a queue for an input pipeline. (deprecated)
tf.compat.v1.train.string_input_producer(
string_tensor, num_epochs=None, shuffle=True, seed=None, capacity=32,
shared_name=None, name=None, cancel_op=None
)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by tf.data
. Use tf.data.Dataset.from_tensor_slices(string_tensor).shuffle(tf.shape(input_tensor, out_type=tf.int64)[0]).repeat(num_epochs)
. If shuffle=False
, omit the .shuffle(...)
.
Note: if num_epochs
is not None
, this function creates local counter
epochs
. Use local_variables_initializer()
to initialize local variables.
string_tensor
: A 1-D string tensor with the strings to produce.num_epochs
: An integer (optional). If specified, string_input_producer
produces each string from string_tensor
num_epochs
times before
generating an OutOfRange
error. If not specified,
string_input_producer
can cycle through the strings in string_tensor
an unlimited number of times.shuffle
: Boolean. If true, the strings are randomly shuffled within each
epoch.seed
: An integer (optional). Seed used if shuffle == True.capacity
: An integer. Sets the queue capacity.shared_name
: (optional). If set, this queue will be shared under the given
name across multiple sessions. All sessions open to the device which has
this queue will be able to access it via the shared_name. Using this in
a distributed setting means each name will only be seen by one of the
sessions which has access to this operation.name
: A name for the operations (optional).cancel_op
: Cancel op for the queue (optional).A queue with the output strings. A QueueRunner
for the Queue
is added to the current Graph
's QUEUE_RUNNER
collection.
ValueError
: If the string_tensor is a null Python list. At runtime,
will fail with an assertion if string_tensor becomes a null tensor.Input pipelines based on Queues are not supported when eager execution is
enabled. Please use the tf.data
API to ingest data under eager execution.