tf.data.experimental.dense_to_sparse_batch

View source on GitHub

A transformation that batches ragged elements into tf.SparseTensors.

tf.data.experimental.dense_to_sparse_batch(
    batch_size, row_shape
)

Like Dataset.padded_batch(), this transformation combines multiple consecutive elements of the dataset, which might have different shapes, into a single element. The resulting element has three components (indices, values, and dense_shape), which comprise a tf.SparseTensor that represents the same data. The row_shape represents the dense shape of each row in the resulting tf.SparseTensor, to which the effective batch size is prepended. For example:

# NOTE: The following examples use `{ ... }` to represent the
# contents of a dataset.
a = { ['a', 'b', 'c'], ['a', 'b'], ['a', 'b', 'c', 'd'] }

a.apply(tf.data.experimental.dense_to_sparse_batch(
    batch_size=2, row_shape=[6])) ==
{
    ([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1]],  # indices
     ['a', 'b', 'c', 'a', 'b'],                 # values
     [2, 6]),                                   # dense_shape
    ([[0, 0], [0, 1], [0, 2], [0, 3]],
     ['a', 'b', 'c', 'd'],
     [1, 6])
}

Args:

Returns:

A Dataset transformation function, which can be passed to tf.data.Dataset.apply.