View source on GitHub
|
Returns a Dataset of feature dictionaries from Example protos.
tf.data.experimental.make_batched_features_dataset(
file_pattern, batch_size, features, reader=None, label_key=None,
reader_args=None, num_epochs=None, shuffle=True, shuffle_buffer_size=10000,
shuffle_seed=None, prefetch_buffer_size=None, reader_num_threads=None,
parser_num_threads=None, sloppy_ordering=False, drop_final_batch=False
)
If label_key argument is provided, returns a Dataset of tuple
comprising of feature dictionaries and label.
serialized_examples = [
features {
feature { key: "age" value { int64_list { value: [ 0 ] } } }
feature { key: "gender" value { bytes_list { value: [ "f" ] } } }
feature { key: "kws" value { bytes_list { value: [ "code", "art" ] } } }
},
features {
feature { key: "age" value { int64_list { value: [] } } }
feature { key: "gender" value { bytes_list { value: [ "f" ] } } }
feature { key: "kws" value { bytes_list { value: [ "sports" ] } } }
}
]
features: {
"age": FixedLenFeature([], dtype=tf.int64, default_value=-1),
"gender": FixedLenFeature([], dtype=tf.string),
"kws": VarLenFeature(dtype=tf.string),
}
And the expected output is:
{
"age": [[0], [-1]],
"gender": [["f"], ["f"]],
"kws": SparseTensor(
indices=[[0, 0], [0, 1], [1, 0]],
values=["code", "art", "sports"]
dense_shape=[2, 2]),
}
file_pattern: List of files or patterns of file paths containing
Example records. See tf.io.gfile.glob for pattern rules.batch_size: An int representing the number of records to combine
in a single batch.features: A dict mapping feature keys to FixedLenFeature or
VarLenFeature values. See tf.io.parse_example.reader: A function or class that can be
called with a filenames tensor and (optional) reader_args and returns
a Dataset of Example tensors. Defaults to tf.data.TFRecordDataset.label_key: (Optional) A string corresponding to the key labels are stored in
tf.Examples. If provided, it must be one of the features key,
otherwise results in ValueError.reader_args: Additional arguments to pass to the reader class.num_epochs: Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever. Defaults to None.shuffle: A boolean, indicates whether the input should be shuffled. Defaults
to True.shuffle_buffer_size: Buffer size of the ShuffleDataset. A large capacity
ensures better shuffling but would increase memory usage and startup time.shuffle_seed: Randomization seed to use for shuffling.prefetch_buffer_size: Number of feature batches to prefetch in order to
improve performance. Recommended value is the number of batches consumed
per training step. Defaults to auto-tune.reader_num_threads: Number of threads used to read Example records. If >1,
the results will be interleaved. Defaults to 1.parser_num_threads: Number of threads to use for parsing Example tensors
into a dictionary of Feature tensors. Defaults to 2.sloppy_ordering: If True, reading performance will be improved at
the cost of non-deterministic ordering. If False, the order of elements
produced is deterministic prior to shuffling (elements are still
randomized if shuffle=True. Note that if the seed is set, then order
of elements after shuffling is deterministic). Defaults to False.drop_final_batch: If True, and the batch size does not evenly divide the
input dataset size, the final smaller batch will be dropped. Defaults to
False.A dataset of dict elements, (or a tuple of dict elements and label).
Each dict maps feature keys to Tensor or SparseTensor objects.
TypeError: If reader is a tf.compat.v1.ReaderBase subclass.ValueError: If label_key is not one of the features keys.