View source on GitHub |
A parallel version of the Dataset.interleave()
transformation. (deprecated)
tf.data.experimental.parallel_interleave(
map_func, cycle_length, block_length=1, sloppy=False,
buffer_output_elements=None, prefetch_input_elements=None
)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.experimental.AUTOTUNE)
instead. If sloppy execution is desired, use tf.data.Options.experimental_deterministic
.
parallel_interleave()
maps map_func
across its input to produce nested
datasets, and outputs their elements interleaved. Unlike
tf.data.Dataset.interleave
, it gets elements from cycle_length
nested
datasets in parallel, which increases the throughput, especially in the
presence of stragglers. Furthermore, the sloppy
argument can be used to
improve performance, by relaxing the requirement that the outputs are produced
in a deterministic order, and allowing the implementation to skip over nested
datasets whose elements are not readily available when requested.
# Preprocess 4 files concurrently.
filenames = tf.data.Dataset.list_files("/path/to/data/train*.tfrecords")
dataset = filenames.apply(
tf.data.experimental.parallel_interleave(
lambda filename: tf.data.TFRecordDataset(filename),
cycle_length=4))
WARNING: If sloppy
is True
, the order of produced elements is not
deterministic.
map_func
: A function mapping a nested structure of tensors to a Dataset
.cycle_length
: The number of input Dataset
s to interleave from in parallel.block_length
: The number of consecutive elements to pull from an input
Dataset
before advancing to the next input Dataset
.sloppy
: If false, elements are produced in deterministic order. Otherwise,
the implementation is allowed, for the sake of expediency, to produce
elements in a non-deterministic order.buffer_output_elements
: The number of elements each iterator being
interleaved should buffer (similar to the .prefetch()
transformation for
each interleaved iterator).prefetch_input_elements
: The number of input elements to transform to
iterators before they are needed for interleaving.A Dataset
transformation function, which can be passed to
tf.data.Dataset.apply
.