tf.distribute.cluster_resolver.ClusterResolver

View source on GitHub

Abstract class for all implementations of ClusterResolvers.

This defines the skeleton for all implementations of ClusterResolvers. ClusterResolvers are a way for TensorFlow to communicate with various cluster management systems (e.g. GCE, AWS, etc...).

By letting TensorFlow communicate with these systems, we will be able to automatically discover and resolve IP addresses for various TensorFlow workers. This will eventually allow us to automatically recover from underlying machine failures and scale TensorFlow worker clusters up and down.

Note to Implementors: In addition to these abstract methods, you must also implement the task_type, task_id, and rpc_layer attributes. You may choose to implement them either as properties with getters or setters or directly set the attributes.

Attributes:

Methods

cluster_spec

View source

cluster_spec()

Retrieve the current state of the cluster and return a ClusterSpec.

Returns:

A ClusterSpec representing the state of the cluster at the moment this function is called.

Implementors of this function must take care in ensuring that the ClusterSpec returned is up-to-date at the time of calling this function. This usually means retrieving the information from the underlying cluster management system every time this function is invoked and reconstructing a cluster_spec, rather than attempting to cache anything.

master

View source

master(
    task_type=None, task_id=None, rpc_layer=None
)

Retrieves the name or URL of the session master.

Args:

Returns:

The name or URL of the session master.

Implementors of this function must take care in ensuring that the master returned is up-to-date at the time to calling this function. This usually means retrieving the master every time this function is invoked.

num_accelerators

View source

num_accelerators(
    task_type=None, task_id=None, config_proto=None
)

Returns the number of accelerator cores per worker.

This returns the number of accelerator cores (such as GPUs and TPUs) available per worker.

Optionally, we allow callers to specify the task_type, and task_id, for if they want to target a specific TensorFlow process to query the number of accelerators. This is to support heterogenous environments, where the number of accelerators cores per host is different.

Args:

Returns:

A map of accelerator types to number of cores.