tf.estimator.MultiClassHead

View source on GitHub

Creates a Head for multi class classification.

Inherits From: Head

tf.estimator.MultiClassHead(
    n_classes, weight_column=None, label_vocabulary=None,
    loss_reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, loss_fn=None,
    name=None
)

Uses sparse_softmax_cross_entropy loss.

The head expects logits with shape [D0, D1, ... DN, n_classes]. In many applications, the shape is [batch_size, n_classes].

labels must be a dense Tensor with shape matching logits, namely [D0, D1, ... DN, 1]. If label_vocabulary given, labels must be a string Tensor with values from the vocabulary. If label_vocabulary is not given, labels must be an integer Tensor with values specifying the class index.

If weight_column is specified, weights must be of shape [D0, D1, ... DN], or [D0, D1, ... DN, 1].

The loss is the weighted sum over the input dimensions. Namely, if the input labels have shape [batch_size, 1], the loss is the weighted sum over batch_size.

Also supports custom loss_fn. loss_fn takes (labels, logits) or (labels, logits, features, loss_reduction) as arguments and returns unreduced loss with shape [D0, D1, ... DN, 1]. loss_fn must support integer labels with shape [D0, D1, ... DN, 1]. Namely, the head applies label_vocabulary to the input labels before passing them to loss_fn.

The head can be used with a canned estimator. Example:

my_head = tf.estimator.MultiClassHead(n_classes=3)
my_estimator = tf.estimator.DNNEstimator(
    head=my_head,
    hidden_units=...,
    feature_columns=...)

It can also be used with a custom model_fn. Example:

def _my_model_fn(features, labels, mode):
  my_head = tf.estimator.MultiClassHead(n_classes=3)
  logits = tf.keras.Model(...)(features)

  return my_head.create_estimator_spec(
      features=features,
      mode=mode,
      labels=labels,
      optimizer=tf.keras.optimizers.Adagrad(lr=0.1),
      logits=logits)

my_estimator = tf.estimator.Estimator(model_fn=_my_model_fn)

Args:

Attributes:

Methods

create_estimator_spec

View source

create_estimator_spec(
    features, mode, logits, labels=None, optimizer=None, trainable_variables=None,
    train_op_fn=None, update_ops=None, regularization_losses=None
)

Returns EstimatorSpec that a model_fn can return.

It is recommended to pass all args via name.

Args:

Returns:

EstimatorSpec.

loss

View source

loss(
    labels, logits, features=None, mode=None, regularization_losses=None
)

Returns regularized training loss. See base_head.Head for details.

metrics

View source

metrics(
    regularization_losses=None
)

Creates metrics. See base_head.Head for details.

predictions

View source

predictions(
    logits, keys=None
)

Return predictions based on keys. See base_head.Head for details.

Args:

Returns:

A dict of predictions.

update_metrics

View source

update_metrics(
    eval_metrics, features, logits, labels, regularization_losses=None
)

Updates eval metrics. See base_head.Head for details.