View source on GitHub |
Creates a new tf.estimator.Estimator
which has given metrics.
tf.estimator.add_metrics(
estimator, metric_fn
)
def my_auc(labels, predictions):
auc_metric = tf.keras.metrics.AUC(name="my_auc")
auc_metric.update_state(y_true=labels, y_pred=predictions['logistic'])
return {'auc': auc_metric}
estimator = tf.estimator.DNNClassifier(...)
estimator = tf.estimator.add_metrics(estimator, my_auc)
estimator.train(...)
estimator.evaluate(...)
Example usage of custom metric which uses features:
def my_auc(labels, predictions, features):
auc_metric = tf.keras.metrics.AUC(name="my_auc")
auc_metric.update_state(y_true=labels, y_pred=predictions['logistic'],
sample_weight=features['weight'])
return {'auc': auc_metric}
estimator = tf.estimator.DNNClassifier(...)
estimator = tf.estimator.add_metrics(estimator, my_auc)
estimator.train(...)
estimator.evaluate(...)
estimator
: A tf.estimator.Estimator
object.metric_fn
: A function which should obey the following signature:
Tensor
or dict of Tensor
created by given
estimator
.dict
of Tensor
objects created by input_fn
which
is given to estimator.evaluate
as an argument.Tensor
or dict of Tensor
created by input_fn
which is given to estimator.evaluate
as an argument.estimator
.estimator's
existing metrics. If there is a name conflict between
this and estimator
s existing metrics, this will override the existing
one. The values of the dict are the results of calling a metric
function, namely a (metric_tensor, update_op)
tuple.A new tf.estimator.Estimator
which has a union of original metrics with
given ones.