tf.estimator.add_metrics

View source on GitHub

Creates a new tf.estimator.Estimator which has given metrics.

tf.estimator.add_metrics(
    estimator, metric_fn
)

Example:

def my_auc(labels, predictions):
    auc_metric = tf.keras.metrics.AUC(name="my_auc")
    auc_metric.update_state(y_true=labels, y_pred=predictions['logistic'])
    return {'auc': auc_metric}

  estimator = tf.estimator.DNNClassifier(...)
  estimator = tf.estimator.add_metrics(estimator, my_auc)
  estimator.train(...)
  estimator.evaluate(...)

Example usage of custom metric which uses features:

def my_auc(labels, predictions, features):
    auc_metric = tf.keras.metrics.AUC(name="my_auc")
    auc_metric.update_state(y_true=labels, y_pred=predictions['logistic'],
                            sample_weight=features['weight'])
    return {'auc': auc_metric}

  estimator = tf.estimator.DNNClassifier(...)
  estimator = tf.estimator.add_metrics(estimator, my_auc)
  estimator.train(...)
  estimator.evaluate(...)

Args:

Returns:

A new tf.estimator.Estimator which has a union of original metrics with given ones.