View source on GitHub |
Returns a tensor with an additional dimension inserted at index axis
.
tf.expand_dims(
input, axis, name=None
)
Given a tensor input
, this operation inserts a dimension of size 1 at the
dimension index axis
of input
's shape. The dimension index axis
starts
at zero; if you specify a negative number for axis
it is counted backward
from the end.
This operation is useful if you want to add a batch dimension to a single
element. For example, if you have a single image of shape [height, width,
channels]
, you can make it a batch of one image with expand_dims(image, 0)
,
which will make the shape [1, height, width, channels]
.
>>> t = [[1, 2, 3],[4, 5, 6]] # shape [2, 3]
>>> tf.expand_dims(t, 0)
<tf.Tensor: shape=(1, 2, 3), dtype=int32, numpy=
array([[[1, 2, 3],
[4, 5, 6]]], dtype=int32)>
>>> tf.expand_dims(t, 1)
<tf.Tensor: shape=(2, 1, 3), dtype=int32, numpy=
array([[[1, 2, 3]],
[[4, 5, 6]]], dtype=int32)>
>>> tf.expand_dims(t, 2)
<tf.Tensor: shape=(2, 3, 1), dtype=int32, numpy=
array([[[1],
[2],
[3]],
[[4],
[5],
[6]]], dtype=int32)>
>>> tf.expand_dims(t, -1) # Last dimension index. In this case, same as 2.
<tf.Tensor: shape=(2, 3, 1), dtype=int32, numpy=
array([[[1],
[2],
[3]],
[[4],
[5],
[6]]], dtype=int32)>
This operation is related to:
tf.squeeze
, which removes dimensions of size 1.tf.reshape
, which provides more flexible reshaping capabilityinput
: A Tensor
.axis
: Integer specifying the dimension index at which to expand the
shape of input
. Given an input of D dimensions, axis
must be in range
[-(D+1), D]
(inclusive).name
: Optional string. The name of the output Tensor
.A tensor with the same data as input
, with an additional dimension
inserted at the index specified by axis
.
ValueError
: If axis
is not specified.InvalidArgumentError
: If axis
is out of range [-(D+1), D]
.