View source on GitHub |
Represents discretized dense input bucketed by boundaries
.
tf.feature_column.bucketized_column(
source_column, boundaries
)
Buckets include the left boundary, and exclude the right boundary. Namely,
boundaries=[0., 1., 2.]
generates buckets (-inf, 0.)
, [0., 1.)
,
[1., 2.)
, and [2., +inf)
.
For example, if the inputs are
boundaries = [0, 10, 100]
input tensor = [[-5, 10000]
[150, 10]
[5, 100]]
then the output will be
output = [[0, 3]
[3, 2]
[1, 3]]
price = tf.feature_column.numeric_column('price')
bucketized_price = tf.feature_column.bucketized_column(
price, boundaries=[...])
columns = [bucketized_price, ...]
features = tf.io.parse_example(
..., features=tf.feature_column.make_parse_example_spec(columns))
dense_tensor = tf.keras.layers.DenseFeatures(columns)(features)
`bucketized_column` can also be crossed with another categorical column using
`crossed_column`:
```python
price = tf.feature_column.numeric_column('price')
# bucketized_column converts numerical feature to a categorical one.
bucketized_price = tf.feature_column.bucketized_column(
price, boundaries=[...])
# 'keywords' is a string feature.
price_x_keywords = tf.feature_column.crossed_column(
[bucketized_price, 'keywords'], 50K)
columns = [price_x_keywords, ...]
features = tf.io.parse_example(
..., features=tf.feature_column.make_parse_example_spec(columns))
dense_tensor = tf.keras.layers.DenseFeatures(columns)(features)
linear_model = tf.keras.experimental.LinearModel(units=...)(dense_tensor)
source_column
: A one-dimensional dense column which is generated with
numeric_column
.boundaries
: A sorted list or tuple of floats specifying the boundaries.A BucketizedColumn
.
ValueError
: If source_column
is not a numeric column, or if it is not
one-dimensional.ValueError
: If boundaries
is not a sorted list or tuple.