tf.feature_column.indicator_column

View source on GitHub

Represents multi-hot representation of given categorical column.

tf.feature_column.indicator_column(
    categorical_column
)
name = indicator_column(categorical_column_with_vocabulary_list(
    'name', ['bob', 'george', 'wanda'])
columns = [name, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)

dense_tensor == [[1, 0, 0]]  # If "name" bytes_list is ["bob"]
dense_tensor == [[1, 0, 1]]  # If "name" bytes_list is ["bob", "wanda"]
dense_tensor == [[2, 0, 0]]  # If "name" bytes_list is ["bob", "bob"]

Args:

Returns:

An IndicatorColumn.