View source on GitHub
|
Returns a feature column that represents sequences of numeric data.
tf.feature_column.sequence_numeric_column(
key, shape=(1,), default_value=0.0, dtype=tf.dtypes.float32, normalizer_fn=None
)
temperature = sequence_numeric_column('temperature')
columns = [temperature]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
sequence_feature_layer = SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
sequence_length_mask = tf.sequence_mask(sequence_length)
rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size)
rnn_layer = tf.keras.layers.RNN(rnn_cell)
outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)
key: A unique string identifying the input features.shape: The shape of the input data per sequence id. E.g. if shape=(2,),
each example must contain 2 * sequence_length values.default_value: A single value compatible with dtype that is used for
padding the sparse data into a dense Tensor.dtype: The type of values.normalizer_fn: If not None, a function that can be used to normalize the
value of the tensor after default_value is applied for parsing.
Normalizer function takes the input Tensor as its argument, and returns
the output Tensor. (e.g. lambda x: (x - 3.0) / 4.2). Please note that
even though the most common use case of this function is normalization, it
can be used for any kind of Tensorflow transformations.A SequenceNumericColumn.
TypeError: if any dimension in shape is not an int.ValueError: if any dimension in shape is not a positive integer.ValueError: if dtype is not convertible to tf.float32.