View source on GitHub |
Return histogram of values.
tf.histogram_fixed_width(
values, value_range, nbins=100, dtype=tf.dtypes.int32, name=None
)
Given the tensor values
, this operation returns a rank 1 histogram counting
the number of entries in values
that fell into every bin. The bins are
equal width and determined by the arguments value_range
and nbins
.
values
: Numeric Tensor
.value_range
: Shape [2] Tensor
of same dtype
as values
.
values <= value_range[0] will be mapped to hist[0],
values >= value_range[1] will be mapped to hist[-1].nbins
: Scalar int32 Tensor
. Number of histogram bins.dtype
: dtype for returned histogram.name
: A name for this operation (defaults to 'histogram_fixed_width').A 1-D Tensor
holding histogram of values.
TypeError
: If any unsupported dtype is provided.tf.errors.InvalidArgumentError
: If value_range does not
satisfy value_range[0] < value_range[1].# Bins will be: (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf)
nbins = 5
value_range = [0.0, 5.0]
new_values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15]
with tf.compat.v1.get_default_session() as sess:
hist = tf.histogram_fixed_width(new_values, value_range, nbins=5)
variables.global_variables_initializer().run()
sess.run(hist) => [2, 1, 1, 0, 2]