Returns a list of tensors with the same shapes and contents as the input
tf.identity_n(
input, name=None
)
tensors.
This op can be used to override the gradient for complicated functions. For example, suppose y = f(x) and we wish to apply a custom function g for backprop such that dx = g(dy). In Python,
with tf.get_default_graph().gradient_override_map(
{'IdentityN': 'OverrideGradientWithG'}):
y, _ = identity_n([f(x), x])
@tf.RegisterGradient('OverrideGradientWithG')
def ApplyG(op, dy, _):
return [None, g(dy)] # Do not backprop to f(x).
input
: A list of Tensor
objects.name
: A name for the operation (optional).A list of Tensor
objects. Has the same type as input
.