View source on GitHub |
Extracts a glimpse from the input tensor.
tf.image.extract_glimpse(
input, size, offsets, centered=True, normalized=True, noise='uniform', name=None
)
Returns a set of windows called glimpses extracted at location
offsets
from the input tensor. If the windows only partially
overlaps the inputs, the non overlapping areas will be filled with
random noise.
The result is a 4-D tensor of shape [batch_size, glimpse_height,
glimpse_width, channels]
. The channels and batch dimensions are the
same as that of the input tensor. The height and width of the output
windows are specified in the size
parameter.
The argument normalized
and centered
controls how the windows are built:
input
: A Tensor
of type float32
. A 4-D float tensor of shape
[batch_size, height, width, channels]
.size
: A Tensor
of type int32
. A 1-D tensor of 2 elements containing the
size of the glimpses to extract. The glimpse height must be specified
first, following by the glimpse width.offsets
: A Tensor
of type float32
. A 2-D integer tensor of shape
[batch_size, 2]
containing the y, x locations of the center of each
window.centered
: An optional bool
. Defaults to True
. indicates if the offset
coordinates are centered relative to the image, in which case the (0, 0)
offset is relative to the center of the input images. If false, the (0,0)
offset corresponds to the upper left corner of the input images.normalized
: An optional bool
. Defaults to True
. indicates if the offset
coordinates are normalized.noise
: An optional string
. Defaults to uniform
. indicates if the noise
should be uniform
(uniform distribution), gaussian
(gaussian
distribution), or zero
(zero padding).name
: A name for the operation (optional).A Tensor
of type float32
.
BATCH_SIZE = 1
IMAGE_HEIGHT = 3
IMAGE_WIDTH = 3
CHANNELS = 1
GLIMPSE_SIZE = (2, 2)
image = tf.reshape(tf.range(9, delta=1, dtype=tf.float32),
shape=(BATCH_SIZE, IMAGE_HEIGHT, IMAGE_WIDTH, CHANNELS))
output = tf.image.extract_glimpse(image, size=GLIMPSE_SIZE,
offsets=[[1, 1]], centered=False, normalized=False)
```