View source on GitHub |
Hard sigmoid activation function.
tf.keras.activations.hard_sigmoid(
x
)
Faster to compute than sigmoid activation.
>>> a = tf.constant([-3.0,-1.0, 0.0,1.0,3.0], dtype = tf.float32)
>>> b = tf.keras.activations.hard_sigmoid(a)
>>> b.numpy()
array([0. , 0.3, 0.5, 0.7, 1. ], dtype=float32)
x
: Input tensor.The hard sigmoid activation:
0
if x < -2.5
1
if x > 2.5
0.2 * x + 0.5
if -2.5 <= x <= 2.5
.