View source on GitHub |
Applies the rectified linear unit activation function.
tf.keras.activations.relu(
x, alpha=0.0, max_value=None, threshold=0
)
With default values, this returns the standard ReLU activation:
max(x, 0)
, the element-wise maximum of 0 and the input tensor.
Modifying default parameters allows you to use non-zero thresholds, change the max value of the activation, and to use a non-zero multiple of the input for values below the threshold.
foo = tf.constant([-10, -5, 0.0, 5, 10], dtype = tf.float32) tf.keras.activations.relu(foo).numpy() array([ 0., 0., 0., 5., 10.], dtype=float32) tf.keras.activations.relu(foo, alpha=0.5).numpy() array([-5. , -2.5, 0. , 5. , 10. ], dtype=float32) tf.keras.activations.relu(foo, max_value=5).numpy() array([0., 0., 0., 5., 5.], dtype=float32) tf.keras.activations.relu(foo, threshold=5).numpy() array([-0., -0., 0., 0., 10.], dtype=float32)
x
: Input tensor
or variable
.alpha
: A float
that governs the slope for values lower than the
threshold.max_value
: A float
that sets the saturation threshold (the largest value
the function will return).threshold
: A float
giving the threshold value of the activation function
below which values will be damped or set to zero.A Tensor
representing the input tensor,
transformed by the relu activation function.
Tensor will be of the same shape and dtype of input x
.