View source on GitHub |
Apply 1D conv with un-shared weights.
tf.keras.backend.local_conv1d(
inputs, kernel, kernel_size, strides, data_format=None
)
inputs
: 3D tensor with shape:
(batch_size, steps, input_dim)
if data_format is "channels_last" or
(batch_size, input_dim, steps)
if data_format is "channels_first".kernel
: the unshared weight for convolution,
with shape (output_length, feature_dim, filters).kernel_size
: a tuple of a single integer,
specifying the length of the 1D convolution window.strides
: a tuple of a single integer,
specifying the stride length of the convolution.data_format
: the data format, channels_first or channels_last.A 3d tensor with shape: (batch_size, output_length, filters) if data_format='channels_first' or 3D tensor with shape: (batch_size, filters, output_length) if data_format='channels_last'.