View source on GitHub |
Apply 2D conv with un-shared weights.
tf.keras.backend.local_conv2d(
inputs, kernel, kernel_size, strides, output_shape, data_format=None
)
inputs
: 4D tensor with shape:
(batch_size, filters, new_rows, new_cols)
if data_format='channels_first'
or 4D tensor with shape:
(batch_size, new_rows, new_cols, filters)
if data_format='channels_last'.kernel
: the unshared weight for convolution,
with shape (output_items, feature_dim, filters).kernel_size
: a tuple of 2 integers, specifying the
width and height of the 2D convolution window.strides
: a tuple of 2 integers, specifying the strides
of the convolution along the width and height.output_shape
: a tuple with (output_row, output_col).data_format
: the data format, channels_first or channels_last.A 4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'.