View source on GitHub |
A LearningRateSchedule that uses a cosine decay schedule with restarts.
Inherits From: LearningRateSchedule
tf.keras.experimental.CosineDecayRestarts(
initial_learning_rate, first_decay_steps, t_mul=2.0, m_mul=1.0, alpha=0.0,
name=None
)
initial_learning_rate
: A scalar float32
or float64
Tensor or a Python
number. The initial learning rate.first_decay_steps
: A scalar int32
or int64
Tensor
or a Python
number. Number of steps to decay over.t_mul
: A scalar float32
or float64
Tensor
or a Python number.
Used to derive the number of iterations in the i-th periodm_mul
: A scalar float32
or float64
Tensor
or a Python number.
Used to derive the initial learning rate of the i-th period:alpha
: A scalar float32
or float64
Tensor or a Python number.
Minimum learning rate value as a fraction of the initial_learning_rate.name
: String. Optional name of the operation. Defaults to 'SGDRDecay'.__call__
__call__(
step
)
Call self as a function.
from_config
@classmethod
from_config(
config
)
Instantiates a LearningRateSchedule
from its config.
config
: Output of get_config()
.A LearningRateSchedule
instance.
get_config
get_config()