View source on GitHub |
The Glorot uniform initializer, also called Xavier uniform initializer.
Inherits From: VarianceScaling
tf.keras.initializers.GlorotUniform(
seed=None
)
It draws samples from a uniform distribution within [-limit, limit]
where limit
is sqrt(6 / (fan_in + fan_out))
where fan_in
is the number of input units in the weight tensor
and fan_out
is the number of output units in the weight tensor.
seed
: A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed
for behavior.__call__
__call__(
shape, dtype=tf.dtypes.float32
)
Returns a tensor object initialized as specified by the initializer.
shape
: Shape of the tensor.dtype
: Optional dtype of the tensor. Only floating point types are
supported.ValueError
: If the dtype is not floating pointfrom_config
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
config
: A Python dictionary.
It will typically be the output of get_config
.An Initializer instance.
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
A JSON-serializable Python dict.