View source on GitHub |
Additive attention layer, a.k.a. Bahdanau-style attention.
tf.keras.layers.AdditiveAttention(
use_scale=True, **kwargs
)
Inputs are query
tensor of shape [batch_size, Tq, dim]
, value
tensor of
shape [batch_size, Tv, dim]
and key
tensor of shape
[batch_size, Tv, dim]
. The calculation follows the steps:
query
and value
into shapes [batch_size, Tq, 1, dim]
and [batch_size, 1, Tv, dim]
respectively.[batch_size, Tq, Tv]
as a non-linear
sum: scores = tf.reduce_sum(tf.tanh(query + value), axis=-1)
[batch_size, Tq, Tv]
: distribution = tf.nn.softmax(scores)
.distribution
to create a linear combination of value
with
shape batch_size, Tq, dim]
:
return tf.matmul(distribution, value)
.use_scale
: If True
, will create a variable to scale the attention scores.causal
: Boolean. Set to True
for decoder self-attention. Adds a mask such
that position i
cannot attend to positions j > i
. This prevents the
flow of information from the future towards the past.inputs
: List of the following tensors:
Tensor
of shape [batch_size, Tq, dim]
.Tensor
of shape [batch_size, Tv, dim]
.Tensor
of shape [batch_size, Tv, dim]
. If not
given, will use value
for both key
and value
, which is the
most common case.mask
: List of the following tensors:
Tensor
of shape [batch_size, Tq]
.
If given, the output will be zero at the positions where
mask==False
.Tensor
of shape [batch_size, Tv]
.
If given, will apply the mask such that values at positions where
mask==False
do not contribute to the result.Attention outputs of shape [batch_size, Tq, dim]
.
The meaning of query
, value
and key
depend on the application. In the
case of text similarity, for example, query
is the sequence embeddings of
the first piece of text and value
is the sequence embeddings of the second
piece of text. key
is usually the same tensor as value
.
Here is a code example for using AdditiveAttention
in a CNN+Attention
network:
# Variable-length int sequences.
query_input = tf.keras.Input(shape=(None,), dtype='int32')
value_input = tf.keras.Input(shape=(None,), dtype='int32')
# Embedding lookup.
token_embedding = tf.keras.layers.Embedding(max_tokens, dimension)
# Query embeddings of shape [batch_size, Tq, dimension].
query_embeddings = token_embedding(query_input)
# Value embeddings of shape [batch_size, Tv, dimension].
value_embeddings = token_embedding(query_input)
# CNN layer.
cnn_layer = tf.keras.layers.Conv1D(
filters=100,
kernel_size=4,
# Use 'same' padding so outputs have the same shape as inputs.
padding='same')
# Query encoding of shape [batch_size, Tq, filters].
query_seq_encoding = cnn_layer(query_embeddings)
# Value encoding of shape [batch_size, Tv, filters].
value_seq_encoding = cnn_layer(value_embeddings)
# Query-value attention of shape [batch_size, Tq, filters].
query_value_attention_seq = tf.keras.layers.AdditiveAttention()(
[query_seq_encoding, value_seq_encoding])
# Reduce over the sequence axis to produce encodings of shape
# [batch_size, filters].
query_encoding = tf.keras.layers.GlobalAveragePooling1D()(
query_seq_encoding)
query_value_attention = tf.keras.layers.GlobalAveragePooling1D()(
query_value_attention_seq)
# Concatenate query and document encodings to produce a DNN input layer.
input_layer = tf.keras.layers.Concatenate()(
[query_encoding, query_value_attention])
# Add DNN layers, and create Model.
# ...