View source on GitHub |
2D convolution layer (e.g. spatial convolution over images).
tf.keras.layers.Conv2D(
filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
dilation_rate=(1, 1), activation=None, use_bias=True,
kernel_initializer='glorot_uniform', bias_initializer='zeros',
kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
kernel_constraint=None, bias_constraint=None, **kwargs
)
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of
outputs. If use_bias
is True,
a bias vector is created and added to the outputs. Finally, if
activation
is not None
, it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide the keyword argument input_shape
(tuple of integers, does not include the sample axis),
e.g. input_shape=(128, 128, 3)
for 128x128 RGB pictures
in data_format="channels_last"
.
filters
: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).kernel_size
: An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.strides
: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any dilation_rate
value != 1.padding
: one of "valid"
or "same"
(case-insensitive).data_format
: A string,
one of channels_last
(default) or channels_first
.
The ordering of the dimensions in the inputs.
channels_last
corresponds to inputs with shape
(batch, height, width, channels)
while channels_first
corresponds to inputs with shape
(batch, channels, height, width)
.
It defaults to the image_data_format
value found in your
Keras config file at ~/.keras/keras.json
.
If you never set it, then it will be "channels_last".dilation_rate
: an integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for
all spatial dimensions.
Currently, specifying any dilation_rate
value != 1 is
incompatible with specifying any stride value != 1.activation
: Activation function to use.
If you don't specify anything, no activation is applied
(ie. "linear" activation: a(x) = x
).use_bias
: Boolean, whether the layer uses a bias vector.kernel_initializer
: Initializer for the kernel
weights matrix.bias_initializer
: Initializer for the bias vector.kernel_regularizer
: Regularizer function applied to
the kernel
weights matrix.bias_regularizer
: Regularizer function applied to the bias vector.activity_regularizer
: Regularizer function applied to
the output of the layer (its "activation")..kernel_constraint
: Constraint function applied to the kernel matrix.bias_constraint
: Constraint function applied to the bias vector.4D tensor with shape:
(samples, channels, rows, cols)
if data_format='channels_first'
or 4D tensor with shape:
(samples, rows, cols, channels)
if data_format='channels_last'.
4D tensor with shape:
(samples, filters, new_rows, new_cols)
if data_format='channels_first'
or 4D tensor with shape:
(samples, new_rows, new_cols, filters)
if data_format='channels_last'.
rows
and cols
values might have changed due to padding.