View source on GitHub |
Convolutional LSTM.
tf.keras.layers.ConvLSTM2D(
filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
dilation_rate=(1, 1), activation='tanh', recurrent_activation='hard_sigmoid',
use_bias=True, kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal', bias_initializer='zeros',
unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None,
bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,
recurrent_constraint=None, bias_constraint=None, return_sequences=False,
go_backwards=False, stateful=False, dropout=0.0, recurrent_dropout=0.0, **kwargs
)
It is similar to an LSTM layer, but the input transformations and recurrent transformations are both convolutional.
filters
: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).kernel_size
: An integer or tuple/list of n integers, specifying the
dimensions of the convolution window.strides
: An integer or tuple/list of n integers,
specifying the strides of the convolution.
Specifying any stride value != 1 is incompatible with specifying
any dilation_rate
value != 1.padding
: One of "valid"
or "same"
(case-insensitive).data_format
: A string,
one of channels_last
(default) or channels_first
.
The ordering of the dimensions in the inputs.
channels_last
corresponds to inputs with shape
(batch, time, ..., channels)
while channels_first
corresponds to
inputs with shape (batch, time, channels, ...)
.
It defaults to the image_data_format
value found in your
Keras config file at ~/.keras/keras.json
.
If you never set it, then it will be "channels_last".dilation_rate
: An integer or tuple/list of n integers, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any dilation_rate
value != 1 is
incompatible with specifying any strides
value != 1.activation
: Activation function to use.
By default hyperbolic tangent activation function is applied
(tanh(x)
).recurrent_activation
: Activation function to use
for the recurrent step.use_bias
: Boolean, whether the layer uses a bias vector.kernel_initializer
: Initializer for the kernel
weights matrix,
used for the linear transformation of the inputs.recurrent_initializer
: Initializer for the recurrent_kernel
weights matrix,
used for the linear transformation of the recurrent state.bias_initializer
: Initializer for the bias vector.unit_forget_bias
: Boolean.
If True, add 1 to the bias of the forget gate at initialization.
Use in combination with bias_initializer="zeros"
.
This is recommended in Jozefowicz et al.kernel_regularizer
: Regularizer function applied to
the kernel
weights matrix.recurrent_regularizer
: Regularizer function applied to
the recurrent_kernel
weights matrix.bias_regularizer
: Regularizer function applied to the bias vector.activity_regularizer
: Regularizer function applied to.kernel_constraint
: Constraint function applied to
the kernel
weights matrix.recurrent_constraint
: Constraint function applied to
the recurrent_kernel
weights matrix.bias_constraint
: Constraint function applied to the bias vector.return_sequences
: Boolean. Whether to return the last output
in the output sequence, or the full sequence.go_backwards
: Boolean (default False).
If True, process the input sequence backwards.stateful
: Boolean (default False). If True, the last state
for each sample at index i in a batch will be used as initial
state for the sample of index i in the following batch.dropout
: Float between 0 and 1.
Fraction of the units to drop for
the linear transformation of the inputs.recurrent_dropout
: Float between 0 and 1.
Fraction of the units to drop for
the linear transformation of the recurrent state.inputs
: A 5D tensor.mask
: Binary tensor of shape (samples, timesteps)
indicating whether
a given timestep should be masked.training
: Python boolean indicating whether the layer should behave in
training mode or in inference mode. This argument is passed to the cell
when calling it. This is only relevant if dropout
or recurrent_dropout
are set.initial_state
: List of initial state tensors to be passed to the first
call of the cell.(samples, time, channels, rows, cols)
(samples, time, rows, cols, channels)
return_sequences
(samples, time, filters, output_row, output_col)
(samples, time, output_row, output_col, filters)
(samples, filters, output_row, output_col)
(samples, output_row, output_col, filters)
where o_row
and o_col
depend on the shape of the filter and
the paddingValueError
: in case of invalid constructor arguments.activation
bias_constraint
bias_initializer
bias_regularizer
data_format
dilation_rate
dropout
filters
kernel_constraint
kernel_initializer
kernel_regularizer
kernel_size
padding
recurrent_activation
recurrent_constraint
recurrent_dropout
recurrent_initializer
recurrent_regularizer
states
strides
unit_forget_bias
use_bias
reset_states
reset_states(
states=None
)
Reset the recorded states for the stateful RNN layer.
Can only be used when RNN layer is constructed with stateful
= True
.
Args:
states: Numpy arrays that contains the value for the initial state, which
will be feed to cell at the first time step. When the value is None,
zero filled numpy array will be created based on the cell state size.
AttributeError
: When the RNN layer is not stateful.ValueError
: When the batch size of the RNN layer is unknown.ValueError
: When the input numpy array is not compatible with the RNN
layer state, either size wise or dtype wise.