tf.keras.layers.ConvLSTM2D

View source on GitHub

Convolutional LSTM.

tf.keras.layers.ConvLSTM2D(
    filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
    dilation_rate=(1, 1), activation='tanh', recurrent_activation='hard_sigmoid',
    use_bias=True, kernel_initializer='glorot_uniform',
    recurrent_initializer='orthogonal', bias_initializer='zeros',
    unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None,
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,
    recurrent_constraint=None, bias_constraint=None, return_sequences=False,
    go_backwards=False, stateful=False, dropout=0.0, recurrent_dropout=0.0, **kwargs
)

It is similar to an LSTM layer, but the input transformations and recurrent transformations are both convolutional.

Arguments:

Call arguments:

Input shape:

Output shape:

Raises:

References:

Attributes:

Methods

reset_states

View source

reset_states(
    states=None
)

Reset the recorded states for the stateful RNN layer.

Can only be used when RNN layer is constructed with stateful = True. Args: states: Numpy arrays that contains the value for the initial state, which will be feed to cell at the first time step. When the value is None, zero filled numpy array will be created based on the cell state size.

Raises: