View source on GitHub |
Cropping layer for 3D data (e.g. spatial or spatio-temporal).
Inherits From: Layer
tf.keras.layers.Cropping3D(
cropping=((1, 1), (1, 1), (1, 1)), data_format=None, **kwargs
)
cropping
: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
(symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop)
.((left_dim1_crop, right_dim1_crop), (left_dim2_crop,
right_dim2_crop), (left_dim3_crop, right_dim3_crop))
data_format
: A string,
one of channels_last
(default) or channels_first
.
The ordering of the dimensions in the inputs.
channels_last
corresponds to inputs with shape
(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)
while channels_first
corresponds to inputs with shape
(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)
.
It defaults to the image_data_format
value found in your
Keras config file at ~/.keras/keras.json
.
If you never set it, then it will be "channels_last".5D tensor with shape:
- If data_format
is "channels_last"
:
(batch, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop,
depth)
- If data_format
is "channels_first"
:
(batch, depth, first_axis_to_crop, second_axis_to_crop,
third_axis_to_crop)
5D tensor with shape:
- If data_format
is "channels_last"
:
(batch, first_cropped_axis, second_cropped_axis, third_cropped_axis,
depth)
- If data_format
is "channels_first"
:
(batch, depth, first_cropped_axis, second_cropped_axis,
third_cropped_axis)