tf.keras.layers.LocallyConnected1D

View source on GitHub

Locally-connected layer for 1D inputs.

Inherits From: Layer

tf.keras.layers.LocallyConnected1D(
    filters, kernel_size, strides=1, padding='valid', data_format=None,
    activation=None, use_bias=True, kernel_initializer='glorot_uniform',
    bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None,
    activity_regularizer=None, kernel_constraint=None, bias_constraint=None,
    implementation=1, **kwargs
)

The LocallyConnected1D layer works similarly to the Conv1D layer, except that weights are unshared, that is, a different set of filters is applied at each different patch of the input.

Example:

# apply a unshared weight convolution 1d of length 3 to a sequence with
    # 10 timesteps, with 64 output filters
    model = Sequential()
    model.add(LocallyConnected1D(64, 3, input_shape=(10, 32)))
    # now model.output_shape == (None, 8, 64)
    # add a new conv1d on top
    model.add(LocallyConnected1D(32, 3))
    # now model.output_shape == (None, 6, 32)

Arguments:

Input shape:

3D tensor with shape: (batch_size, steps, input_dim)

Output shape:

3D tensor with shape: (batch_size, new_steps, filters) steps value might have changed due to padding or strides.