tf.keras.layers.SeparableConv1D

View source on GitHub

Depthwise separable 1D convolution.

tf.keras.layers.SeparableConv1D(
    filters, kernel_size, strides=1, padding='valid', data_format=None,
    dilation_rate=1, depth_multiplier=1, activation=None, use_bias=True,
    depthwise_initializer='glorot_uniform', pointwise_initializer='glorot_uniform',
    bias_initializer='zeros', depthwise_regularizer=None,
    pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None,
    depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None,
    **kwargs
)

This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If use_bias is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output.

Arguments: