tf.keras.layers.SimpleRNN

View source on GitHub

Fully-connected RNN where the output is to be fed back to input.

Inherits From: RNN

tf.keras.layers.SimpleRNN(
    units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform',
    recurrent_initializer='orthogonal', bias_initializer='zeros',
    kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None,
    activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
    bias_constraint=None, dropout=0.0, recurrent_dropout=0.0,
    return_sequences=False, return_state=False, go_backwards=False, stateful=False,
    unroll=False, **kwargs
)

See the Keras RNN API guide for details about the usage of RNN API.

Arguments:

Call arguments:

Examples:

inputs = np.random.random([32, 10, 8]).astype(np.float32)
simple_rnn = tf.keras.layers.SimpleRNN(4)

output = simple_rnn(inputs)  # The output has shape `[32, 4]`.

simple_rnn = tf.keras.layers.SimpleRNN(
    4, return_sequences=True, return_state=True)

# whole_sequence_output has shape `[32, 10, 4]`.
# final_state has shape `[32, 4]`.
whole_sequence_output, final_state = simple_rnn(inputs)

Attributes:

Methods

reset_states

View source

reset_states(
    states=None
)

Reset the recorded states for the stateful RNN layer.

Can only be used when RNN layer is constructed with stateful = True. Args: states: Numpy arrays that contains the value for the initial state, which will be feed to cell at the first time step. When the value is None, zero filled numpy array will be created based on the cell state size.

Raises: