tf.keras.losses.Huber

View source on GitHub

Computes the Huber loss between y_true and y_pred.

tf.keras.losses.Huber(
    delta=1.0, reduction=losses_utils.ReductionV2.AUTO, name='huber_loss'
)

For each value x in error = y_true - y_pred:

loss = 0.5 * x^2                  if |x| <= d
loss = 0.5 * d^2 + d * (|x| - d)  if |x| > d

where d is delta. See: https://en.wikipedia.org/wiki/Huber_loss

Usage:

l = tf.keras.losses.Huber()
loss = l([0., 1., 1.], [1., 0., 1.])
print('Loss: ', loss.numpy())  # Loss: 0.333

Usage with the compile API:

model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.Huber())

Args:

Methods

__call__

View source

__call__(
    y_true, y_pred, sample_weight=None
)

Invokes the Loss instance.

Args:

Returns:

Weighted loss float Tensor. If reduction is NONE, this has shape [batch_size, d0, .. dN-1]; otherwise, it is scalar. (Note dN-1 because all loss functions reduce by 1 dimension, usually axis=-1.)

Raises:

from_config

View source

@classmethod
from_config(
    config
)

Instantiates a Loss from its config (output of get_config()).

Args:

Returns:

A Loss instance.

get_config

View source

get_config()