View source on GitHub
|
Computes the crossentropy metric between the labels and predictions.
tf.keras.metrics.BinaryCrossentropy(
name='binary_crossentropy', dtype=None, from_logits=False, label_smoothing=0
)
This is the crossentropy metric class to be used when there are only two label classes (0 and 1).
m = tf.keras.metrics.BinaryCrossentropy()
m.update_state([1., 0., 1., 0.], [1., 1., 1., 0.])
# EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999
# y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)
# y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON]
# Metric = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON))
# = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON),
# -log(Y_MAX + EPSILON), -log(1)]
# = [(0 + 15.33) / 2, (0 + 0) / 2]
# Reduced metric = 7.665 / 2
print('Final result: ', m.result().numpy()) # Final result: 3.833
Usage with tf.keras API:
model = tf.keras.Model(inputs, outputs)
model.compile(
'sgd',
loss='mse',
metrics=[tf.keras.metrics.BinaryCrossentropy()])
name: (Optional) string name of the metric instance.dtype: (Optional) data type of the metric result.from_logits: (Optional )Whether output is expected to be a logits tensor.
By default, we consider that output encodes a probability distribution.label_smoothing: (Optional) Float in [0, 1]. When > 0, label values are
smoothed, meaning the confidence on label values are relaxed.
e.g. label_smoothing=0.2 means that we will use a value of 0.1 for
label 0 and 0.9 for label 1"reset_statesreset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
resultresult()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_stateupdate_state(
y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
y_true and y_pred should have the same shape.
y_true: The ground truth values.y_pred: The predicted values.sample_weight: Optional weighting of each example. Defaults to 1. Can be
a Tensor whose rank is either 0, or the same rank as y_true,
and must be broadcastable to y_true.Update op.