tf.keras.metrics.FalseNegatives

View source on GitHub

Calculates the number of false negatives.

tf.keras.metrics.FalseNegatives(
    thresholds=None, name=None, dtype=None
)

For example, if y_true is [0, 1, 1, 1] and y_pred is [0, 1, 0, 0] then the false negatives value is 2. If the weights were specified as [0, 0, 1, 0] then the false negatives value would be 1.

If sample_weight is given, calculates the sum of the weights of false negatives. This metric creates one local variable, accumulator that is used to keep track of the number of false negatives.

If sample_weight is None, weights default to 1. Use sample_weight of 0 to mask values.

Usage:

m = tf.keras.metrics.FalseNegatives()
m.update_state([0, 1, 1, 1], [0, 1, 0, 0])
print('Final result: ', m.result().numpy())  # Final result: 2

Usage with tf.keras API:

model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss='mse', metrics=[tf.keras.metrics.FalseNegatives()])

Args:

Methods

reset_states

View source

reset_states()

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

result()

Computes and returns the metric value tensor.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

update_state

View source

update_state(
    y_true, y_pred, sample_weight=None
)

Accumulates the given confusion matrix condition statistics.

Args:

Returns:

Update op.