View source on GitHub
|
Computes the mean absolute error between the labels and predictions.
tf.keras.metrics.MeanAbsoluteError(
name='mean_absolute_error', dtype=None
)
For example, if y_true is [0., 0., 1., 1.], and y_pred is [1., 1., 1., 0.]
the mean absolute error is 3/4 (0.75).
>>> m = MeanAbsoluteError()
>>> _ = m.update_state([0., 0., 1., 1.], [1., 1., 1., 0.])
>>> m.result().numpy()
0.75
Usage with tf.keras API:
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', metrics=[tf.keras.metrics.MeanAbsoluteError()])
fn: The metric function to wrap, with signature
fn(y_true, y_pred, **kwargs).name: (Optional) string name of the metric instance.dtype: (Optional) data type of the metric result.**kwargs: The keyword arguments that are passed on to fn.reset_statesreset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
resultresult()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_stateupdate_state(
y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
y_true and y_pred should have the same shape.
y_true: The ground truth values.y_pred: The predicted values.sample_weight: Optional weighting of each example. Defaults to 1. Can be
a Tensor whose rank is either 0, or the same rank as y_true,
and must be broadcastable to y_true.Update op.