View source on GitHub
|
Computes the element-wise (weighted) mean of the given tensors.
Inherits From: Metric
tf.keras.metrics.MeanTensor(
name='mean_tensor', dtype=None
)
MeanTensor returns a tensor with the same shape of the input tensors. The
mean value is updated by keeping local variables total and count. The
total tracks the sum of the weighted values, and count stores the sum of
the weighted counts.
m = tf.keras.metrics.MeanTensor()
m.update_state([0, 1, 2, 3])
m.update_state([4, 5, 6, 7])
print('Result: ', m.result().numpy()) # Result: [2, 3, 4, 5]
m.update_state([12, 10, 8, 6], sample_weights= [0, 0.2, 0.5, 1])
print('Result: ', m.result().numpy()) # Result: [2, 3.636, 4.8, 5.333]
name: (Optional) string name of the metric instance.dtype: (Optional) data type of the metric result.counttotalreset_statesreset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
resultresult()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_stateupdate_state(
values, sample_weight=None
)
Accumulates statistics for computing the element-wise mean.
values: Per-example value.sample_weight: Optional weighting of each example. Defaults to 1.Update op.