tf.keras.metrics.PrecisionAtRecall

View source on GitHub

Computes the precision at a given recall.

tf.keras.metrics.PrecisionAtRecall(
    recall, num_thresholds=200, name=None, dtype=None
)

This metric creates four local variables, true_positives, true_negatives, false_positives and false_negatives that are used to compute the precision at the given recall. The threshold for the given recall value is computed and used to evaluate the corresponding precision.

If sample_weight is None, weights default to 1. Use sample_weight of 0 to mask values.

Usage:

m = tf.keras.metrics.PrecisionAtRecall(0.8, num_thresholds=1)
m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9])
print('Final result: ', m.result().numpy())  # Final result: 1.0

Usage with tf.keras API:

model = tf.keras.Model(inputs, outputs)
model.compile(
    'sgd',
    loss='mse',
    metrics=[tf.keras.metrics.PrecisionAtRecall()])

Args:

Methods

reset_states

View source

reset_states()

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

result()

Computes and returns the metric value tensor.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

update_state

View source

update_state(
    y_true, y_pred, sample_weight=None
)

Accumulates confusion matrix statistics.

Args:

Returns:

Update op.