tf.keras.metrics.RootMeanSquaredError

View source on GitHub

Computes root mean squared error metric between y_true and y_pred.

Inherits From: Mean

tf.keras.metrics.RootMeanSquaredError(
    name='root_mean_squared_error', dtype=None
)

Usage:

m = tf.keras.metrics.RootMeanSquaredError()
m.update_state([2., 4., 6.], [1., 3., 2.])
print('Final result: ', m.result().numpy())  # Final result: 2.449

Usage with tf.keras API:

model = tf.keras.Model(inputs, outputs)
model.compile('sgd', metrics=[tf.keras.metrics.RootMeanSquaredError()])

Args:

Methods

reset_states

View source

reset_states()

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

result()

Computes and returns the metric value tensor.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

update_state

View source

update_state(
    y_true, y_pred, sample_weight=None
)

Accumulates root mean squared error statistics.

Args:

Returns:

Update op.