View source on GitHub
|
Computes root mean squared error metric between y_true and y_pred.
Inherits From: Mean
tf.keras.metrics.RootMeanSquaredError(
name='root_mean_squared_error', dtype=None
)
m = tf.keras.metrics.RootMeanSquaredError()
m.update_state([2., 4., 6.], [1., 3., 2.])
print('Final result: ', m.result().numpy()) # Final result: 2.449
Usage with tf.keras API:
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', metrics=[tf.keras.metrics.RootMeanSquaredError()])
name: (Optional) string name of the metric instance.dtype: (Optional) data type of the metric result.reset_statesreset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
resultresult()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_stateupdate_state(
y_true, y_pred, sample_weight=None
)
Accumulates root mean squared error statistics.
y_true: The ground truth values.y_pred: The predicted values.sample_weight: Optional weighting of each example. Defaults to 1. Can be a
Tensor whose rank is either 0, or the same rank as y_true, and must
be broadcastable to y_true.Update op.