tf.keras.metrics.SparseCategoricalCrossentropy

View source on GitHub

Computes the crossentropy metric between the labels and predictions.

tf.keras.metrics.SparseCategoricalCrossentropy(
    name='sparse_categorical_crossentropy', dtype=None, from_logits=False, axis=-1
)

Use this crossentropy metric when there are two or more label classes. We expect labels to be provided as integers. If you want to provide labels using one-hot representation, please use CategoricalCrossentropy metric. There should be # classes floating point values per feature for y_pred and a single floating point value per feature for y_true.

In the snippet below, there is a single floating point value per example for y_true and # classes floating pointing values per example for y_pred. The shape of y_true is [batch_size] and the shape of y_pred is [batch_size, num_classes].

Usage:

m = tf.keras.metrics.SparseCategoricalCrossentropy()
m.update_state(
  [1, 2],
  [[0.05, 0.95, 0], [0.1, 0.8, 0.1]])

# y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]]
# logits = log(y_pred)
# softmax = exp(logits) / sum(exp(logits), axis=-1)
# softmax = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]

# xent = -sum(y * log(softmax), 1)
# log(softmax) = [[-2.9957, -0.0513, -16.1181], [-2.3026, -0.2231, -2.3026]]
# y_true * log(softmax) = [[0, -0.0513, 0], [0, 0, -2.3026]]

# xent = [0.0513, 2.3026]
# Reduced xent = (0.0513 + 2.3026) / 2

print('Final result: ', m.result().numpy())  # Final result: 1.176

Usage with tf.keras API:

model = tf.keras.Model(inputs, outputs)
model.compile(
  'sgd',
  loss='mse',
  metrics=[tf.keras.metrics.SparseCategoricalCrossentropy()])

Args:

Args:

Methods

reset_states

View source

reset_states()

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

result()

Computes and returns the metric value tensor.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

update_state

View source

update_state(
    y_true, y_pred, sample_weight=None
)

Accumulates metric statistics.

y_true and y_pred should have the same shape.

Args:

Returns:

Update op.