View source on GitHub
|
Computes how often integer targets are in the top K predictions.
tf.keras.metrics.SparseTopKCategoricalAccuracy(
k=5, name='sparse_top_k_categorical_accuracy', dtype=None
)
m = tf.keras.metrics.SparseTopKCategoricalAccuracy()
m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]])
print('Final result: ', m.result().numpy()) # Final result: 1.0
Usage with tf.keras API:
model = tf.keras.Model(inputs, outputs)
model.compile(
'sgd',
metrics=[tf.keras.metrics.SparseTopKCategoricalAccuracy()])
k: (Optional) Number of top elements to look at for computing accuracy.
Defaults to 5.name: (Optional) string name of the metric instance.dtype: (Optional) data type of the metric result.reset_statesreset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
resultresult()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_stateupdate_state(
y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
y_true and y_pred should have the same shape.
y_true: The ground truth values.y_pred: The predicted values.sample_weight: Optional weighting of each example. Defaults to 1. Can be
a Tensor whose rank is either 0, or the same rank as y_true,
and must be broadcastable to y_true.Update op.