View source on GitHub
|
A LearningRateSchedule that uses an exponential decay schedule.
Inherits From: LearningRateSchedule
tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate, decay_steps, decay_rate, staircase=False, name=None
)
initial_learning_rate: A scalar float32 or float64 Tensor or a
Python number. The initial learning rate.decay_steps: A scalar int32 or int64 Tensor or a Python number.
Must be positive. See the decay computation above.decay_rate: A scalar float32 or float64 Tensor or a
Python number. The decay rate.staircase: Boolean. If True decay the learning rate at discrete
intervalsname: String. Optional name of the operation. Defaults to
'ExponentialDecay'.__call____call__(
step
)
Call self as a function.
from_config@classmethod
from_config(
config
)
Instantiates a LearningRateSchedule from its config.
config: Output of get_config().A LearningRateSchedule instance.
get_configget_config()