View source on GitHub |
A LearningRateSchedule that uses a polynomial decay schedule.
Inherits From: LearningRateSchedule
tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0,
cycle=False, name=None
)
initial_learning_rate
: A scalar float32
or float64
Tensor
or a
Python number. The initial learning rate.decay_steps
: A scalar int32
or int64
Tensor
or a Python number.
Must be positive. See the decay computation above.end_learning_rate
: A scalar float32
or float64
Tensor
or a
Python number. The minimal end learning rate.power
: A scalar float32
or float64
Tensor
or a
Python number. The power of the polynomial. Defaults to linear, 1.0.cycle
: A boolean, whether or not it should cycle beyond decay_steps.name
: String. Optional name of the operation. Defaults to
'PolynomialDecay'.__call__
__call__(
step
)
Call self as a function.
from_config
@classmethod
from_config(
config
)
Instantiates a LearningRateSchedule
from its config.
config
: Output of get_config()
.A LearningRateSchedule
instance.
get_config
get_config()