View source on GitHub
|
A LearningRateSchedule that uses a polynomial decay schedule.
Inherits From: LearningRateSchedule
tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0,
cycle=False, name=None
)
initial_learning_rate: A scalar float32 or float64 Tensor or a
Python number. The initial learning rate.decay_steps: A scalar int32 or int64 Tensor or a Python number.
Must be positive. See the decay computation above.end_learning_rate: A scalar float32 or float64 Tensor or a
Python number. The minimal end learning rate.power: A scalar float32 or float64 Tensor or a
Python number. The power of the polynomial. Defaults to linear, 1.0.cycle: A boolean, whether or not it should cycle beyond decay_steps.name: String. Optional name of the operation. Defaults to
'PolynomialDecay'.__call____call__(
step
)
Call self as a function.
from_config@classmethod
from_config(
config
)
Instantiates a LearningRateSchedule from its config.
config: Output of get_config().A LearningRateSchedule instance.
get_configget_config()