tf.keras.preprocessing.image.DirectoryIterator

View source on GitHub

Iterator capable of reading images from a directory on disk.

Inherits From: Iterator

tf.keras.preprocessing.image.DirectoryIterator(
    directory, image_data_generator, target_size=(256, 256), color_mode='rgb',
    classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None,
    data_format=None, save_to_dir=None, save_prefix='', save_format='png',
    follow_links=False, subset=None, interpolation='nearest', dtype=None
)

Arguments:

Attributes:

Methods

__getitem__

__getitem__(
    idx
)

Gets batch at position index.

Arguments:

Returns:

A batch

__iter__

__iter__()

Create a generator that iterate over the Sequence.

__len__

__len__()

Number of batch in the Sequence.

Returns:

The number of batches in the Sequence.

next

next()

For python 2.x.

Returns

The next batch.

on_epoch_end

on_epoch_end()

Method called at the end of every epoch.

reset

reset()

set_processing_attrs

set_processing_attrs(
    image_data_generator, target_size, color_mode, data_format, save_to_dir,
    save_prefix, save_format, subset, interpolation
)

Sets attributes to use later for processing files into a batch.

Arguments

image_data_generator: Instance of `ImageDataGenerator`
    to use for random transformations and normalization.
target_size: tuple of integers, dimensions to resize input images to.
color_mode: One of `"rgb"`, `"rgba"`, `"grayscale"`.
    Color mode to read images.
data_format: String, one of `channels_first`, `channels_last`.
save_to_dir: Optional directory where to save the pictures
    being yielded, in a viewable format. This is useful
    for visualizing the random transformations being
    applied, for debugging purposes.
save_prefix: String prefix to use for saving sample
    images (if `save_to_dir` is set).
save_format: Format to use for saving sample images
    (if `save_to_dir` is set).
subset: Subset of data (`"training"` or `"validation"`) if
    validation_split is set in ImageDataGenerator.
interpolation: Interpolation method used to resample the image if the
    target size is different from that of the loaded image.
    Supported methods are "nearest", "bilinear", and "bicubic".
    If PIL version 1.1.3 or newer is installed, "lanczos" is also
    supported. If PIL version 3.4.0 or newer is installed, "box" and
    "hamming" are also supported. By default, "nearest" is used.

Class Variables