View source on GitHub |
Iterator yielding data from a Numpy array.
Inherits From: Iterator
tf.keras.preprocessing.image.NumpyArrayIterator(
x, y, image_data_generator, batch_size=32, shuffle=False, sample_weight=None,
seed=None, data_format=None, save_to_dir=None, save_prefix='',
save_format='png', subset=None, dtype=None
)
x
: Numpy array of input data or tuple.
If tuple, the second elements is either
another numpy array or a list of numpy arrays,
each of which gets passed
through as an output without any modifications.y
: Numpy array of targets data.image_data_generator
: Instance of ImageDataGenerator
to use for random transformations and normalization.batch_size
: Integer, size of a batch.shuffle
: Boolean, whether to shuffle the data between epochs.sample_weight
: Numpy array of sample weights.seed
: Random seed for data shuffling.data_format
: String, one of channels_first
, channels_last
.save_to_dir
: Optional directory where to save the pictures
being yielded, in a viewable format. This is useful
for visualizing the random transformations being
applied, for debugging purposes.save_prefix
: String prefix to use for saving sample
images (if save_to_dir
is set).save_format
: Format to use for saving sample images
(if save_to_dir
is set).subset
: Subset of data ("training"
or "validation"
) if
validation_split is set in ImageDataGenerator.dtype
: Dtype to use for the generated arrays.__getitem__
__getitem__(
idx
)
Gets batch at position index
.
index
: position of the batch in the Sequence.A batch
__iter__
__iter__()
Create a generator that iterate over the Sequence.
__len__
__len__()
Number of batch in the Sequence.
The number of batches in the Sequence.
next
next()
For python 2.x.
The next batch.
on_epoch_end
on_epoch_end()
Method called at the end of every epoch.
reset
reset()