View source on GitHub |
Implementation of the scikit-learn classifier API for Keras.
tf.keras.wrappers.scikit_learn.KerasClassifier(
build_fn=None, **sk_params
)
check_params
check_params(
params
)
Checks for user typos in params
.
params
: dictionary; the parameters to be checkedValueError
: if any member of params
is not a valid argument.filter_sk_params
filter_sk_params(
fn, override=None
)
Filters sk_params
and returns those in fn
's arguments.
fn
: arbitrary functionoverride
: dictionary, values to override sk_params
res
: dictionary containing variables
in both sk_params
and fn
's arguments.fit
fit(
x, y, **kwargs
)
Constructs a new model with build_fn
& fit the model to (x, y)
.
x
: array-like, shape (n_samples, n_features)
Training samples where n_samples
is the number of samples
and n_features
is the number of features.y
: array-like, shape (n_samples,)
or (n_samples, n_outputs)
True labels for x
.**kwargs
: dictionary arguments
Legal arguments are the arguments of Sequential.fit
history
: object
details about the training history at each epoch.ValueError
: In case of invalid shape for y
argument.get_params
get_params(
**params
)
Gets parameters for this estimator.
**params
: ignored (exists for API compatibility).Dictionary of parameter names mapped to their values.
predict
predict(
x, **kwargs
)
Returns the class predictions for the given test data.
x
: array-like, shape (n_samples, n_features)
Test samples where n_samples
is the number of samples
and n_features
is the number of features.**kwargs
: dictionary arguments
Legal arguments are the arguments
of Sequential.predict_classes
.preds
: array-like, shape (n_samples,)
Class predictions.predict_proba
predict_proba(
x, **kwargs
)
Returns class probability estimates for the given test data.
x
: array-like, shape (n_samples, n_features)
Test samples where n_samples
is the number of samples
and n_features
is the number of features.**kwargs
: dictionary arguments
Legal arguments are the arguments
of Sequential.predict_classes
.proba
: array-like, shape (n_samples, n_outputs)
Class probability estimates.
In the case of binary classification,
to match the scikit-learn API,
will return an array of shape (n_samples, 2)
(instead of (n_sample, 1)
as in Keras).score
score(
x, y, **kwargs
)
Returns the mean accuracy on the given test data and labels.
x
: array-like, shape (n_samples, n_features)
Test samples where n_samples
is the number of samples
and n_features
is the number of features.y
: array-like, shape (n_samples,)
or (n_samples, n_outputs)
True labels for x
.**kwargs
: dictionary arguments
Legal arguments are the arguments of Sequential.evaluate
.score
: float
Mean accuracy of predictions on x
wrt. y
.ValueError
: If the underlying model isn't configured to
compute accuracy. You should pass metrics=["accuracy"]
to
the .compile()
method of the model.set_params
set_params(
**params
)
Sets the parameters of this estimator.
**params
: Dictionary of parameter names mapped to their values.self