Copy a tensor setting everything outside a central band in each innermost matrix
tf.linalg.band_part(
input, num_lower, num_upper, name=None
)
to zero.
The band
part is computed as follows:
Assume input
has k
dimensions [I, J, K, ..., M, N]
, then the output is a
tensor with the same shape where
band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n]
.
The indicator function
in_band(m, n) = (num_lower < 0 || (m-n) <= num_lower)) &&
(num_upper < 0 || (n-m) <= num_upper)
.
# if 'input' is [[ 0, 1, 2, 3]
[-1, 0, 1, 2]
[-2, -1, 0, 1]
[-3, -2, -1, 0]],
tf.matrix_band_part(input, 1, -1) ==> [[ 0, 1, 2, 3]
[-1, 0, 1, 2]
[ 0, -1, 0, 1]
[ 0, 0, -1, 0]],
tf.matrix_band_part(input, 2, 1) ==> [[ 0, 1, 0, 0]
[-1, 0, 1, 0]
[-2, -1, 0, 1]
[ 0, -2, -1, 0]]
tf.matrix_band_part(input, 0, -1) ==> Upper triangular part.
tf.matrix_band_part(input, -1, 0) ==> Lower triangular part.
tf.matrix_band_part(input, 0, 0) ==> Diagonal.
input
: A Tensor
. Rank k
tensor.num_lower
: A Tensor
. Must be one of the following types: int32
, int64
.
0-D tensor. Number of subdiagonals to keep. If negative, keep entire
lower triangle.num_upper
: A Tensor
. Must have the same type as num_lower
.
0-D tensor. Number of superdiagonals to keep. If negative, keep
entire upper triangle.name
: A name for the operation (optional).A Tensor
. Has the same type as input
.