View source on GitHub |
Computes the inverse given the LU decomposition(s) of one or more matrices.
tf.linalg.lu_matrix_inverse(
lower_upper, perm, validate_args=False, name=None
)
This op is conceptually identical to,
inv_X = tf.lu_matrix_inverse(*tf.linalg.lu(X))
tf.assert_near(tf.matrix_inverse(X), inv_X)
# ==> True
Note: this function does not verify the implied matrix is actually invertible
nor is this condition checked even when validate_args=True
.
lower_upper
: lu
as returned by tf.linalg.lu
, i.e., if matmul(P,
matmul(L, U)) = X
then lower_upper = L + U - eye
.perm
: p
as returned by tf.linag.lu
, i.e., if matmul(P, matmul(L, U)) =
X
then perm = argmax(P)
.validate_args
: Python bool
indicating whether arguments should be checked
for correctness. Note: this function does not verify the implied matrix is
actually invertible, even when validate_args=True
.
Default value: False
(i.e., don't validate arguments).name
: Python str
name given to ops managed by this object.
Default value: None
(i.e., 'lu_matrix_inverse').inv_x
: The matrix_inv, i.e.,
tf.matrix_inverse(tf.linalg.lu_reconstruct(lu, perm))
.import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
x = [[[3., 4], [1, 2]],
[[7., 8], [3, 4]]]
inv_x = tf.linalg.lu_matrix_inverse(*tf.linalg.lu(x))
tf.assert_near(tf.matrix_inverse(x), inv_x)
# ==> True