View source on GitHub |
Compute the Moore-Penrose pseudo-inverse of one or more matrices.
tf.linalg.pinv(
a, rcond=None, validate_args=False, name=None
)
Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all large singular values.
The pseudo-inverse of a matrix A
, is defined as: 'the matrix that 'solves'
[the least-squares problem] A @ x = b
,' i.e., if x_hat
is a solution, then
A_pinv
is the matrix such that x_hat = A_pinv @ b
. It can be shown that if
U @ Sigma @ V.T = A
is the singular value decomposition of A
, then
A_pinv = V @ inv(Sigma) U^T
. [(Strang, 1980)][1]
This function is analogous to numpy.linalg.pinv
.
It differs only in default value of rcond
. In numpy.linalg.pinv
, the
default rcond
is 1e-15
. Here the default is
10. * max(num_rows, num_cols) * np.finfo(dtype).eps
.
a
: (Batch of) float
-like matrix-shaped Tensor
(s) which are to be
pseudo-inverted.rcond
: Tensor
of small singular value cutoffs. Singular values smaller
(in modulus) than rcond
* largest_singular_value (again, in modulus) are
set to zero. Must broadcast against tf.shape(a)[:-2]
.
Default value: 10. * max(num_rows, num_cols) * np.finfo(a.dtype).eps
.validate_args
: When True
, additional assertions might be embedded in the
graph.
Default value: False
(i.e., no graph assertions are added).name
: Python str
prefixed to ops created by this function.
Default value: 'pinv'.a_pinv
: (Batch of) pseudo-inverse of input a
. Has same shape as a
except
rightmost two dimensions are transposed.TypeError
: if input a
does not have float
-like dtype
.ValueError
: if input a
has fewer than 2 dimensions.import tensorflow as tf
import tensorflow_probability as tfp
a = tf.constant([[1., 0.4, 0.5],
[0.4, 0.2, 0.25],
[0.5, 0.25, 0.35]])
tf.matmul(tf.linalg..pinv(a), a)
# ==> array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]], dtype=float32)
a = tf.constant([[1., 0.4, 0.5, 1.],
[0.4, 0.2, 0.25, 2.],
[0.5, 0.25, 0.35, 3.]])
tf.matmul(tf.linalg..pinv(a), a)
# ==> array([[ 0.76, 0.37, 0.21, -0.02],
[ 0.37, 0.43, -0.33, 0.02],
[ 0.21, -0.33, 0.81, 0.01],
[-0.02, 0.02, 0.01, 1. ]], dtype=float32)
[1]: G. Strang. 'Linear Algebra and Its Applications, 2nd Ed.' Academic Press, Inc., 1980, pp. 139-142.