View source on GitHub |
Converts a TensorFlow model into TensorFlow Lite model.
tf.lite.TFLiteConverter(
funcs, trackable_obj=None
)
funcs
: List of TensorFlow ConcreteFunctions. The list should not contain
duplicate elements.trackable_obj
: tf.AutoTrackable object associated with funcs
. A
reference to this object needs to be maintained so that Variables do not
get garbage collected since functions have a weak reference to
Variables. This is only required when the tf.AutoTrackable object is not
maintained by the user (e.g. from_saved_model
).allow_custom_ops
: Boolean indicating whether to allow custom operations.
When false any unknown operation is an error. When true, custom ops are
created for any op that is unknown. The developer will need to provide
these to the TensorFlow Lite runtime with a custom resolver.
(default False)target_spec
: Experimental flag, subject to change. Specification of target
device.optimizations
: Experimental flag, subject to change. A list of optimizations
to apply when converting the model. E.g. [Optimize.DEFAULT]
representative_dataset
: A representative dataset that can be used to
generate input and output samples for the model. The converter can use the
dataset to evaluate different optimizations.experimental_new_converter
: Experimental flag, subject to change.
Enables MLIR-based conversion instead of TOCO conversion.experimental_new_quantizer
: Experimental flag, subject to change.
Enables MLIR-based post-training quantization.# Converting a SavedModel to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_saved_model(saved_model_dir)
tflite_model = converter.convert()
# Converting a tf.Keras model to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
# Converting ConcreteFunctions to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_concrete_functions([func])
tflite_model = converter.convert()
convert
convert()
Converts a TensorFlow GraphDef based on instance variables.
The converted data in serialized format.
ValueError
: Multiple concrete functions are specified.
Input shape is not specified.
Invalid quantization parameters.from_concrete_functions
@classmethod
from_concrete_functions(
funcs
)
Creates a TFLiteConverter object from ConcreteFunctions.
funcs
: List of TensorFlow ConcreteFunctions. The list should not contain
duplicate elements. Currently converter can only convert a single
ConcreteFunction. Converting multiple functions is under development.TFLiteConverter object.
Invalid input type.
from_keras_model
@classmethod
from_keras_model(
model
)
Creates a TFLiteConverter object from a Keras model.
model
: tf.Keras.ModelTFLiteConverter object.
from_saved_model
@classmethod
from_saved_model(
saved_model_dir, signature_keys=None, tags=None
)
Creates a TFLiteConverter object from a SavedModel directory.
saved_model_dir
: SavedModel directory to convert.signature_keys
: List of keys identifying SignatureDef containing inputs
and outputs. Elements should not be duplicated. By default the
signatures
attribute of the MetaGraphdef is used. (default
saved_model.signatures)tags
: Set of tags identifying the MetaGraphDef within the SavedModel to
analyze. All tags in the tag set must be present. (default set(SERVING))TFLiteConverter object.
Invalid signature keys.