![]() |
Compute the cumulative sum of the tensor x
along axis
.
tf.math.cumsum(
x, axis=0, exclusive=False, reverse=False, name=None
)
By default, this op performs an inclusive cumsum, which means that the first element of the input is identical to the first element of the output:
tf.cumsum([a, b, c]) # [a, a + b, a + b + c]
By setting the exclusive
kwarg to True
, an exclusive cumsum is performed
instead:
tf.cumsum([a, b, c], exclusive=True) # [0, a, a + b]
By setting the reverse
kwarg to True
, the cumsum is performed in the
opposite direction:
tf.cumsum([a, b, c], reverse=True) # [a + b + c, b + c, c]
This is more efficient than using separate tf.reverse
ops.
The reverse
and exclusive
kwargs can also be combined:
tf.cumsum([a, b, c], exclusive=True, reverse=True) # [b + c, c, 0]
x
: A Tensor
. Must be one of the following types: float32
, float64
,
int64
, int32
, uint8
, uint16
, int16
, int8
, complex64
,
complex128
, qint8
, quint8
, qint32
, half
.axis
: A Tensor
of type int32
(default: 0). Must be in the range
[-rank(x), rank(x))
.exclusive
: If True
, perform exclusive cumsum.reverse
: A bool
(default: False).name
: A name for the operation (optional).A Tensor
. Has the same type as x
.