View source on GitHub |
Performs the avg pooling on the input.
tf.nn.avg_pool(
input, ksize, strides, padding, data_format=None, name=None
)
Each entry in output
is the mean of the corresponding size ksize
window in value
.
input
: Tensor of rank N+2, of shape [batch_size] + input_spatial_shape +
[num_channels]
if data_format
does not start with "NC" (default), or
[batch_size, num_channels] + input_spatial_shape
if data_format starts
with "NC". Pooling happens over the spatial dimensions only.ksize
: An int or list of ints
that has length 1
, N
or N+2
. The size
of the window for each dimension of the input tensor.strides
: An int or list of ints
that has length 1
, N
or N+2
. The
stride of the sliding window for each dimension of the input tensor.padding
: A string, either 'VALID'
or 'SAME'
. The padding algorithm. See
the "returns" section of tf.nn.convolution
for details.data_format
: A string. Specifies the channel dimension. For N=1 it can be
either "NWC" (default) or "NCW", for N=2 it can be either "NHWC" (default)
or "NCHW" and for N=3 either "NDHWC" (default) or "NCDHW".name
: Optional name for the operation.A Tensor
of format specified by data_format
.
The average pooled output tensor.