View source on GitHub |
Performs beam search decoding on the logits given in input.
tf.nn.ctc_beam_search_decoder(
inputs, sequence_length, beam_width=100, top_paths=1
)
Note The ctc_greedy_decoder
is a special case of the
ctc_beam_search_decoder
with top_paths=1
and beam_width=1
(but
that decoder is faster for this special case).
inputs
: 3-D float
Tensor
, size [max_time, batch_size, num_classes]
.
The logits.sequence_length
: 1-D int32
vector containing sequence lengths, having size
[batch_size]
.beam_width
: An int scalar >= 0 (beam search beam width).top_paths
: An int scalar >= 0, <= beam_width (controls output size).A tuple (decoded, log_probabilities)
where
decoded
: A list of length top_paths, where decoded[j]
is a SparseTensor
containing the decoded outputs:
decoded[j].indices
: Indices matrix [total_decoded_outputs[j], 2]
;
The rows store: [batch, time]
.
decoded[j].values
: Values vector, size [total_decoded_outputs[j]]
.
The vector stores the decoded classes for beam j
.
decoded[j].dense_shape
: Shape vector, size (2)
.
The shape values are: [batch_size, max_decoded_length[j]]
.
log_probability
: A float
matrix [batch_size, top_paths]
containing
sequence log-probabilities.