View source on GitHub
|
Computes CTC (Connectionist Temporal Classification) loss.
tf.nn.ctc_loss(
labels, logits, label_length, logit_length, logits_time_major=True, unique=None,
blank_index=None, name=None
)
This op implements the CTC loss as presented in the article:
labels: tensor of shape [batch_size, max_label_seq_length] or SparseTensorlogits: tensor of shape [frames, batch_size, num_labels], if
logits_time_major == False, shape is [batch_size, frames, num_labels].label_length: tensor of shape [batch_size], None if labels is SparseTensor
Length of reference label sequence in labels.logit_length: tensor of shape [batch_size] Length of input sequence in
logits.logits_time_major: (optional) If True (default), logits is shaped [time,
batch, logits]. If False, shape is [batch, time, logits]unique: (optional) Unique label indices as computed by
ctc_unique_labels(labels). If supplied, enable a faster, memory efficient
implementation on TPU.blank_index: (optional) Set the class index to use for the blank label.
Negative values will start from num_classes, ie, -1 will reproduce the
ctc_loss behavior of using num_classes - 1 for the blank symbol. There is
some memory/performance overhead to switching from the default of 0 as an
additional shifted copy of the logits may be created.name: A name for this Op. Defaults to "ctc_loss_dense".loss: tensor of shape [batch_size], negative log probabilities.