Local Response Normalization.
tf.nn.local_response_normalization(
input, depth_radius=5, bias=1, alpha=1, beta=0.5, name=None
)
The 4-D input
tensor is treated as a 3-D array of 1-D vectors (along the last
dimension), and each vector is normalized independently. Within a given vector,
each component is divided by the weighted, squared sum of inputs within
depth_radius
. In detail,
sqr_sum[a, b, c, d] =
sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** beta
For details, see Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012).
input
: A Tensor
. Must be one of the following types: half
, bfloat16
, float32
.
4-D.depth_radius
: An optional int
. Defaults to 5
.
0-D. Half-width of the 1-D normalization window.bias
: An optional float
. Defaults to 1
.
An offset (usually positive to avoid dividing by 0).alpha
: An optional float
. Defaults to 1
.
A scale factor, usually positive.beta
: An optional float
. Defaults to 0.5
. An exponent.name
: A name for the operation (optional).A Tensor
. Has the same type as input
.